

#### READY MIX CONCRETE PRODUCED BY

## **GCP Applied Technologies**

FACILITY: DOWNTOWN

476 Industrial Ave.,

Cambridge, MA 02140

MIX NAME: 300-288

STRENGTH: 5000 (28 days)

| Impact Indicator  | per yd3   | per m3   |          |  |
|-------------------|-----------|----------|----------|--|
| Climate Change    | kg CO2e   | 378.55   | 495.12   |  |
| Ozone Depletion   | kg CFC11e | 1.02E-05 | 1.34E-05 |  |
| Acidification     | kg SO2e   | 1.07     | 1.40     |  |
| Eutrophication    | kg NE     | 0.51     | 0.66     |  |
| SFP (Smog)        | kg O3e    | 21.75    | 28.44    |  |
| Non-renew. energy | MJ, NCV   | 2344,52  | 3066.52  |  |

### 1. GENERAL INFORMATION

| Declared Product                          | Ready-mixed concrete produced by GCP Applied Technologies                                                                              |                                                  |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| EPD Number                                | EPD# TBD                                                                                                                               |                                                  |
| Date of Issue                             | Date TBD                                                                                                                               |                                                  |
| Period of Validity                        | 5 years                                                                                                                                |                                                  |
| EPD Holder                                | GCP Applied Technologies<br>476 Industrial Ave.,<br>Cambridge,MA 02140                                                                 | gcp applied technologies                         |
| Program Operator                          | ASTM International<br>100 Barr Harbor Drive, West Conshohocken, PA<br>19428-2959, USA                                                  | ASTM INTERNATIONAL Helping our world work better |
| LCA and EPD Developer                     | Athena Sustainable Materials Institute<br>280 Albert Street, Suite 404, Ottawa, ON<br>K1P 5G8, Canada                                  | Athena Sustainable Materials Institute           |
| Core PCR                                  | ISO 21930:2017 Sustainability in Building Construction $-$ Environmenta                                                                | al Declaration of Building Products              |
| Sub-category PCR                          | NSF International Product Category Rule (PCR) for Concrete Version 1 (                                                                 | February 22, 2019),                              |
|                                           | verified by Thomas P. Gloria, Ph.D., Industrial Ecology Consultants                                                                    |                                                  |
| Independent LCA Reviewer and EPD Verifier | Independent verification of the declaration and data, according to ISO 2  ☐ internal ☑ external  Timothy S. Brooke, ASTM International | 21930:2017 and ISO 14025:2006                    |

The declared product meets the following product specifications:

- ACI 211: Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete
- $\bullet$  ACI 318: Building Code Requirements for Structural Concrete
- ASTM C94: Standard Specification for Ready-Mixed Concrete
- CSI MasterFormat Division 03-30-00: Cast-in-Place Concrete
- UNSPSC Code 30111500: Ready Mix

#### Disclaimer:

EPDs are comparable only if they comply with this document, use the same sub-category PCR where applicable, include all relevant information modules and are based on equivalent scenarios with respect to the context of construction works.





#### 2. METHODOLOGICAL FRAMEWORK

#### **Declared Unit**

The declared unit is 1 cubic yard of ready mixed concrete product. Key product variables include:

- Compressive strength Compressive strengths are represented in the various mix designs and include the number of days after pouring as a part of the reference value: e.g. 3,000 psi @ 28 days; 4,000 psi @ 56 days; 6,000 psi @ 90 days; etc.
- Water to cementitious materials ratio (w/cm) Varies, but generally lower for higher strength non-air entrained mix designs (above 5,000psi (34.5 MPa)) in accordance with ACI 211.1 recommendations.
- SCM use various mix designs call for Portland cement displacement by incorporating fly ash (FA) and/or slag cement (SL).
- Admixtures use Admixture use was specified for the different mixes that
  were modeled. These admixtures included an air-entraining admixture, water
  reducing and accelerating admixtures, and high range water reducer
  admixtures.

#### Scope of LCA

A summary of life cycle stages included in the EPD is identified in Figure 1 as follows:

- A1: Raw Material Supply (upstream processes): Extraction, handling and
  processing of the raw materials used in the production of concrete: cement,
  supplementary cementitious materials, aggregate (coarse and fine), water,
  admixtures and other materials or chemicals used in concrete mixtures.
- A2: Transportation: Transportation of these materials from the supplier to the 'gate' of the concrete producer.
- A3: Manufacturing (core processes): The energy used to store, batch, mix and distribute the concrete and operate the facility (concrete plant)

A summary of activities excluded from the EPD is as follows:

- Production, manufacture, and construction of manufacturing capital goods and infrastructure.
- Production and manufacture of production equipment, delivery vehicles, and laboratory equipment.
- Personnel-related activities (travel, furniture, and office supplies)
- Energy and water use related to company management and sales activities

#### **Cut-off Rules**

The cut-off criteria for all activity stage flows considered within the system boundary conform with ISO 21930: 2017 Section 7.1.8. Specifically, the cut-off criteria were applied as follows:

- All inputs and outputs for which data are available are included in the calculated effects and no collected core process data are excluded.
- A one percent cut-off is considered for renewable and non-renewable primary energy consumption and the total mass of inputs within a unit process. The sum of the total neglected flows does not exceed 5% of all energy consumption and mass of inputs.
- All flows known to contribute a significant impact or to uncertainty (e.g., portland cement and admixtures) are included.
- The cut-off rules are not applied to hazardous and toxic material flows all of which are included in the life cycle inventory.
- Proxy data was used for admixtures used by WCP, Inc. that did not align
  with any of the admixture categories published in the EFCA EPDs. In
  those cases, the Water Reducing Admixture data was selected as a
  conservative assumption as per the NSF PCR Appendix A.

#### Allocation

The allocation of co-products or secondary flows cross the system boundary conforms with ISO 21930: 2017 Section 7.2.4. Specifically, the allocation criteria were applied as follows:

- Allocation was not applied any of the gate-to-gate production facilities.
   For facilities that manufacture additional products (i.e. aggregate), the
   LCI flows at the facility specific to the concrete production were reported.
- For secondary data sources, the NSF PCR default allocation selection (i.e. "Cut-off" or "Alloc Rec") was applied.
- The product category rules for this EPD recognize fly ash, silica fume and slag as recovered materials and thus the environmental impacts allocated to these materials are limited to the treatment and transportation required to use as a concrete material input
- A portion (30%) of the reported fleet energy use for truck mixing plants was allocated to the mixing facility.

| BUILDING LIFE CYCLE INFORMATION MODULES (X: Included in LCA; MND: Module Not Declared) |                          |               |                   |              |                   |             |        |             |               |                           |                          |                                |                                               |                     |                      |
|----------------------------------------------------------------------------------------|--------------------------|---------------|-------------------|--------------|-------------------|-------------|--------|-------------|---------------|---------------------------|--------------------------|--------------------------------|-----------------------------------------------|---------------------|----------------------|
| Production Stage Construction Stage Use Stage                                          |                          |               |                   |              | End-Of-Life Stage |             |        |             |               |                           |                          |                                |                                               |                     |                      |
| Extraction and Upstream Production                                                     | Transport to<br>Facility | Manufacturing | Transport to Site | Installation | Use               | Maintenance | Repair | Replacement | Refurbishment | Operational<br>Energy Use | Operational<br>Water Use | De-Construction<br>/Demolition | Transport to<br>Waste Process.<br>or Disposal | Waste<br>Processing | Disposal of<br>Waste |
| A1                                                                                     | A2                       | A3            | A4                | A5           | B1                | B2          | В3     | B4          | B5            | В6                        | В7                       | C1                             | C2                                            | C3                  | C4                   |
| Х                                                                                      | Х                        | Х             | MND               | MND          | MND               | MND         | MND    | MND         | MND           | MND                       | MND                      | MND                            | MND                                           | MND                 | MND                  |



# PRODUCT DECLARATION



### 3. DATA SOURCES

This EPD is based on foreground LCI data collected from the participating company's production facilities for the calendar year 2019. All upstream material, resource and energy carrier inputs have been sourced from various industry-average datasets and literature. Many of these data sets are defaulted to those specified for use in the NSF PCR 2019. The following Table describe each LCI data source and includes the data quality assessment.

| Input                                                                             | LCI Data Source                                                                                                                                                                  | Year | Geography     | Data Quality Assessment                                                                                       |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|---------------------------------------------------------------------------------------------------------------|
| Portland Cement and Limestone<br>Cement, ASTM C595, AASHTO M<br>240, or CSA A3001 | Portland Cement Association EPD USA Portland Cement                                                                                                                              | 2016 | North America | Technology: very good, Time: very good, Geography: very good, Completeness: very good, Reliability: very good |
| Slag Cement, ASTM C989                                                            | Slag Cement Association EPD of North America Slag<br>Cement (2015)                                                                                                               | 2015 | North America | Technology: very good, Time: very good, Geography: very good, Completeness: very good, Reliability: very good |
| Fly Ash, ASTM C618                                                                | None, no incoming burden, only inbound transport is considered*                                                                                                                  | N/A  | N/A           | N/A                                                                                                           |
| Silica Fume, ASTM C1240                                                           | None, no incoming burden, only inbound transport is considered*                                                                                                                  | N/A  | N/A           | N/A                                                                                                           |
| Crushed Aggregates, coarse and fine, ASTM C33                                     | ecoinvent 3.4: "Gravel, crushed {RoW}  production   Cutoff, U" (2018), modified with US average electricity                                                                      | 2001 | World/US      | Technology: very good, Time: poor, Geography: good,<br>Completeness: very good, Reliability: very good        |
| Natural Aggregates, coarse and fine, ASTM C33                                     | ecoinvent 3.4: "Gravel, round {RoW}  gravel and sand<br>quarry operation   Cut-off, U" (2018), modified with US<br>average electricity                                           | 2001 | World/US      | Technology: very good, Time: poor, Geography: good,<br>Completeness: very good, Reliability: very good        |
| Manufactured Lightweight<br>Aggregates, ASTM C330                                 | ecoinvent 3.4: Expanded clay {RoW}  production   Cut-off, U (2018), modified with US average electricity                                                                         | 2000 | World/US      | Technology: good, Time: poor, Geography: good,<br>Completeness: very good, Reliability: very good             |
| Admixtures, ASTM C494                                                             | EFCA EPDs for Air Entrainers, Plasticisers and superplasticisers, Hardening Accelerators, Set Accelerators, Water Resisting Admixtures, and Retarders (2015)                     | 2015 | EU            | Technology: very good, Time: very good, Geography: fair,<br>Completeness: very good, Reliability: very good   |
| Batch and Wash Water, ASTM<br>C1602                                               | ecoinvent 3.4: Tap water {RoW}  market for   Cut-off, U (2018), modified with US average electricity                                                                             | 2011 | World/US      | Technology: very good, Time: good, Geography: good,<br>Completeness: very good, Reliability: very good        |
| Road Transport                                                                    | USLCI 2014: Transport, combination truck, short-haul, diesel powered/tkm/RNA (2014)                                                                                              | 2010 | North America | Technology: very good, Time: fair, Geography: very good, Completeness: very good, Reliability: very good      |
| Rail Transport                                                                    | USLCI 2014: Transport, train, diesel powered /US U (2014)                                                                                                                        | 2007 | North America | Technology: very good, Time: fair, Geography: very good, Completeness: very good, Reliability: very good      |
| Ocean Transport                                                                   | USLCI 2014: Transport, ocean freighter, average fuel mix<br>/US U (2014)                                                                                                         | 2007 | North America | Technology: very good, Time: fair, Geography: very good,<br>Completeness: very good, Reliability: very good   |
| Electricity                                                                       | ecoinvent 3.4: Electricity, low voltage {XX}  market for   Cut-off, U (2018)                                                                                                     | 2015 | North America | Technology: very good, Time: very good, Geography: very good, Completeness: very good, Reliability: very good |
| Diesel                                                                            | USLCI 2014: Diesel, combusted in industrial boiler /US U (2014)                                                                                                                  | 2007 | North America | Technology: very good, Time: fair, Geography: very good, Completeness: very good, Reliability: very good      |
| Gasoline                                                                          | USLCI 2014: Gasoline, combusted in equipment /US U (2014)                                                                                                                        | 2007 | North America | Technology: very good, Time: fair, Geography: very good,<br>Completeness: very good, Reliability: very good   |
| Liquefied Propane Gas                                                             | USLCI 2014: Liquefied petroleum gas, combusted in industrial boiler /US U (2014)                                                                                                 | 2007 | North America | Technology: very good, Time: fair, Geography: very good, Completeness: very good, Reliability: very good      |
| Hazardous Solid Waste                                                             | ecoinvent 3.4: Hazardous waste, for incineration {RoW} <br>treatment of hazardous waste, hazardous waste<br>incineration   Alloc, Rec, U (2018), modified with US<br>electricity | 2011 | World/US      | Technology: very good, Time: good, Geography: good,<br>Completeness: very good, Reliability: very good        |
| Non-Hazardous Solid Waste                                                         | ecoinvent 3.4: Inert waste {RoW}  treatment of, sanitary landfill   Alloc Rec, U (2018), modified with US average electricity                                                    | 2011 | World/US      | Technology: very good, Time: good, Geography: good, Completeness: very good, Reliability: very good           |

<sup>\*</sup> The product category rules for this EPD recognize fly ash, silica fume and slag as recovered materials and thus the environmental impacts allocated to these materials are limited to the treatment and transportation required to use as a concrete material input.



# PRODUCT DECLARATION



### 4. ENVIRONMENTAL INDICATORS DERIVED FROM LCA

Facility: DOWNTOWN
Mix Name: 300-288

Compressive Strength: 5

5000 PSI @ 28 DAYS

Declared Unit: 1 cubic yard (1 cubic meter) ready mix concrete produced at GCP Applied Technologies

| CALCULATED RESULTS A1-A3 PER CUBIC YARD AND CUBIC MET              | ER    |            |          |          |
|--------------------------------------------------------------------|-------|------------|----------|----------|
| Core Mandatory Impact Indicator                                    |       |            | per yd3  | per m3   |
| Global warming potential                                           | GWP   | kg CO2e    | 378.55   | 495.12   |
| Depletion potential of the stratospheric ozone layer               | ODP   | kg CFC11e  | 1.02E-05 | 1.34E-05 |
| Acidification potential of soil and water sources                  | AP    | kg SO2e    | 1.07     | 1.40     |
| Eutrophication potential                                           | EP    | kg Ne      | 0.51     | 0.66     |
| Formation potential of tropospheric ozone                          | SFP   | kg O3e     | 21.75    | 28.44    |
| Abiotic depletion potential for fossil resources                   | ADPf  | MJ, NCV    | 2150.74  | 2813.06  |
| Abiotic depletion potentialfor non-fossil mineral resources        | ADPe  | kg Sbe     | 3.40E-04 | 4.45E-04 |
| Fossil fuel depletion                                              | FFD   | MJ Surplus | 139.20   | 182.07   |
| Use of Primary Resources                                           |       |            |          |          |
| Renewable primary energy carrier used as energy                    | RPRE  | MJ, NCV    | 103.85   | 135.83   |
| Renewable primary energy carrier used as material                  | RPRM  | MJ, NCV    | 0.00     | 0.00     |
| Non-renewable primary energy carrier used as energy                | NRPRE | MJ, NCV    | 2344.52  | 3066.52  |
| Non-renewable primary energy carrier used as material              | NRPRM | MJ, NCV    | 0.00     | 0.00     |
| Secondary Material, Secondary Fuel and Recovered Energy            |       |            |          |          |
| Secondary material                                                 | SM    | kg         | 0.00     | 0.00     |
| Renewable secondary fuel                                           | RSF   | MJ, NCV    | 0.00     | 0.00     |
| Non-renewable secondary fuel                                       | NRSF  | MJ, NCV    | 156.67   | 204.92   |
| Recovered energy                                                   | RE    | MJ, NCV    | 0.00     | 0.00     |
| Mandatory Inventory Parameters                                     |       |            |          |          |
| Consumption of freshwater resources                                | FW    | m3         | 3.69     | 4.82     |
| Calcination and carbonation emissions                              | CCE   | kg CO2e    | 161.88   | 211.73   |
| Indicators Describing Waste                                        |       |            |          |          |
| Hazardous waste disposed                                           | HWD   | kg         | 0.00     | 0.00     |
| Non-hazardous waste disposed                                       | NHWD  | kg         | 7.57     | 9.90     |
| High-level radioactive waste, conditioned, to final repository     | HLRW  | m3         | 2.62E-08 | 3.43E-08 |
| Intermediate- and low-level radioactive waste, to final repository | ILLRW | m3         | 3.37E-07 | 4.41E-07 |
| Components for re-use                                              | CRU   | kg         | 0.00     | 0.00     |
| Materials for recycling                                            | MR    | kg         | 0.00     | 0.00     |
| Materials for energy recovery                                      | MER   | kg         | 0.00     | 0.00     |
| Recovered energy exported from the product system                  | EE    | MJ, NCV    | 0.00     | 0.00     |

# PRODUCT DECLARATION



#### **REFERENCES**

American Concrete Institute (2009) ACI 211.1: Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete

American Concrete Institute (2008) ACI 318: Building Code Requirements for Structural Concrete.

Bare, J. (2012) Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI) v2.1.

CSA Group (2014) CSA A23.1-09/A23.2-14 - Concrete materials and methods of concrete construction / Test methods and standard practices for concrete.

CSA Group (2014) CSA A23.1-09/A23.2-14 - Concrete materials and methods of concrete construction / Test methods and standard practices for concrete.

European Federation of Concrete Admixture Associations (2015). EFCA Environmental Declarations for Admixtures

International Organization for Standardization (2017) ISO 21930:2017 Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products and services.

NSF International (2015) NSF Program Operator Rules

Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., & Weidema, B. (2016) The ecoinvent database version 3 (part I): overview and methodology. The International Journal of Life Cycle Assessment, 21, 1218–1230.

American Concrete Institute (2009) ACI 211.2: Standard Practice for Selecting Proportions for Structural Lightweight Concrete

ASTM International (2018) ASTM C94: Standard Specification for Ready-Mixed Concrete

Construction Specifications Institute (CSI) MasterFormat Division 03-30-00 Cast-in-Place Concrete

CSA Group (2014) CSA A23.1-09/A23.2-14 - Concrete materials and methods of concrete construction / Test methods and standard practices for concrete.

EN 15804:2012 Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products.

International Organization for Standardization (2006) ISO 14025:2006 Environmental labels and declarations – Type III environmental declarations – Principles and procedures

National Renewable Energy Laboratory (2019) U.S. Life Cycle Inventory Database http://www.nrel.gov/lci/

NSF International (2019) Product Category Rule for Concrete, Version 1

